Trick - Dropout
思想
思想: 在每次训练过程中随机地忽略一些神经元。这些神经元被随机地“抛弃”了。也就是说它们在正向传播过程中对于下游神经元的贡献效果暂时消失了,反向传播时该神经元也不会有任何权重的更新。
注意:每次迭代的过程中,我们删除的神经单元是随机的,本次删除的与上次删除神经元是不一样的
简单来说,Dropout 通过参数共享提供了一种廉价的 Bagging 集成近似—— Dropout 策略相当于集成了包括所有从基础网络除去部分单元后形成的子网络。
QA
1. 为何 Dropout 能够解决过拟合?
取平均的作用: 先回到正常的模型(没有dropout),我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。
dropout 掉不同的隐藏神经元就类似在训练不同的网络(随机删掉一半隐藏神经元导致网络结构已经不同),整个dropout过程就相当于 对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。
减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。(这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况)。 迫使网络去学习更加鲁棒的特征 (这些特征在其它的神经元的随机子集中也存在)。
换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的模式(鲁棒性)。(这个角度看 dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高)
2. Drpout 与 Bagging 有何不同?
- 在 Bagging 的情况下,所有模型都是独立的;而在 Dropout 的情况下,所有模型共享参数,其中每个模型继承父神经网络参数的不同子集。
- 在 Bagging 的情况下,每一个模型都会在其相应训练集上训练到收敛。而在 Dropout 的情况下,通常大部分模型都没有显式地被训练;取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好的参数设定。
3. Dropout 有什么缺陷?
dropout一大缺点就是代价函数J不再被明确定义,每次迭代,都会随机移除一些节点,如果再三检查梯度下降的性能,实际上是很难进行复查的。定义明确的代价函数J每次迭代后都会下降,因为我们所优化的代价函数J实际上并没有明确定义,或者说在某种程度上很难计算,所以我们失去了调试工具来绘制这样的图片。
我通常会关闭dropout函数,将keep-prob的值设为1,运行代码,确保J函数单调递减。然后打开dropout函数,希望在dropout过程中,代码并未引入bug。我觉得你也可以尝试其它方法,虽然我们并没有关于这些方法性能的数据统计,但你可以把它们与dropout方法一起使用。